SECTION III: CWA ANALYSIS ### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | INW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | # B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: ## Watershed size: Pick List Drainage area: **Pick List** Average annual rainfall: inches Average annual snowfall: inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through **Pick List** tributaries before entering TNW. Project waters are **Pick List** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are **Pick List** aerial (straight) miles from TNW. Project waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Tributary stream order, if known: ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | (b) | General Tributary Characteristics (check all that apply): | |-------|-----|--| | | | Tributary is: Natural | | | | Artificial (man-made). Explain: | | | | ☐ Manipulated (man-altered). Explain: | | | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | | | | Surface flow is: Pick List. Characteristics: | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment deposition destruction of terrestrial vegetation the presence of litter and debris destruction of terrestrial vegetation the presence of litter and debris destruction of terrestrial vegetation the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting scour multiple observed or predicted flow events abrupt change in plant community other (list): | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) | Cha | emical Characteristics: practerize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: patify specific pollutants, if known: | 3 ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Wetlands 1-13 have a biological, chemical, and physical connection to an Offsite Waterway that is immediately outside the Review Area's western boundary. The Offsite Waterway was impacted as part of a previous development project (Corps No. NWP-2004-775) that created a bioswale in the feature to treat stormwater. The Offsite Waterway flows to the southwest along Highway 62 to a culvert inlet and 30 inch stormwater pipe at the eastern corner of the intersection of H Avenue and Highway 62 (Rogue Valley Sewer Services, 2022). Stormwater flows through the pipe to the east and then heads south alongside Division Avenue, and west alongside Avenue G. The pipe delivers water to a daylit waterway that is south of the Review Area alongside Highway 62, and flows downstream into Agate Slough, Whetstone Creek, and ultimately the Rogue River (a TNW). In an email to the Corps dated September 27, 2021, Rogue Valley Sewer Services confirmed the hydrologic connection between the stormwater infrastructure along Avenue H and the Rogue River that is described above and depicted on their Service Area Maps. The Offsite Waterway was not included in the wetland delineation, but an image from Google Earth Street View (dated May 2021) shows that the tributary has a discontinuous ordinary high water mark (OHWM) that is distinguished by a change in vegetative cover and substrate, where the channel bottom is bare and the upper banks support vegetation. Immediately west of the Review Area, where the bioswale was located on construction plans for NWP-2004-775, the stream banks and OHWM are well defined for approximately 490 feet based on Google Earth Street View images (no date). Surface water is evident in aerial images from March 12, 2021 (Digital Globe) and June 2018 (Google Earth Pro). The Corps determined that the Offsite Waterway has a direct, downstream connection to a TNW through surface water and subsurface pipes. Wetlands 1-13 are physically connected to the Offsite Waterway through subsurface flows that travel laterally through the upper soil profile above a hardpan layer. A chemical connection between the wetlands and the Offsite Waterway is present because subsurface flows through the vernal pool complex have lower temperatures than surface water and contribute to cooling downstream waters, which is beneficial for salmonids and other fish. In addition, Wetlands 1-13 improve the water quality of downstream waters by removing pollutants from the aquatic ecosystem before water leaves the Review Area. A biological connection is present due to the ability for aquatic wildlife, and species protected by the ESA to migrate and reproduce within and between wetlands in the Review Area and downstream waters. Suitable habitat for federally listed Cook's lomatium, large flowered woolly meadowfoam, and vernal pool fairy shrimp occurs in the Review Area in vernal pools and their flanks, and in downstream waters. The seeds of both plant species float and are transported via surface water between discontinuous wetland features during high rainfall and flood events. Vernal pool fairy shrimp migrate between aquatic features during high precipitation and flood events and have the ability to survive in a desiccated state in drylands for several consecutive years (USFWS 2011). Based on the above information Wetlands 1-13 have more than a speculative and insubstantial nexus downstream to the Rogue River. D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: ☐ TNWs: linear feet width (ft), Or, acres. ☐ Wetlands adjacent to TNWs: acres. | |----|---| | 2. | RPWs that flow directly or indirectly into TNWs. ☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. | 8See Footnote # 3. | | Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | |------|---| | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | 0.80 | Provide acreage estimates for jurisdictional wetlands in the review area: The Vernal Pool Complex includes 13 wetlands and is 6 acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | SUC | OLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | Ide | ntify water body and summarize rationale supporting determination: | | | | | Pro | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. | E. 8 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.